
Affine linear and D4 symmetric lattice equations: symmetry analysis and reductions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 13353

(http://iopscience.iop.org/1751-8121/40/44/015)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/44
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 13353–13384 doi:10.1088/1751-8113/40/44/015

Affine linear and D4 symmetric lattice equations:
symmetry analysis and reductions

A Tongas, D Tsoubelis and P Xenitidis

Department of Mathematics, University of Patras, 265 00 Patras, Greece

E-mail: xeniti@math.upatras.gr

Received 25 July 2007, in final form 20 September 2007
Published 16 October 2007
Online at stacks.iop.org/JPhysA/40/13353

Abstract
We consider lattice equations on Z

2 which are autonomous, affine linear and
possess the symmetries of the square. Some basic properties of equations
of this type are derived, as well as a sufficient linearization condition and a
conservation law. A systematic analysis of the Lie point and the generalized
three- and five-point symmetries is presented. It leads to the generic form
of the symmetry generators of all the equations in this class, which satisfy
a certain non-degeneracy condition. Finally, symmetry reductions of certain
lattice equations to discrete analogs of the Painlevé equations are considered.

PACS number: 02.20.Sv
Mathematics Subject Classification: 39A05, 70G65

1. Introduction

The importance of symmetry-based techniques applied to differential equations, especially
to nonlinear ones, is well known. It can be argued that symmetry methods are the most
effective ones for obtaining explicit solutions of complicated (systems of) nonlinear partial
differential equations. In fact, the so-called group invariant solutions of such equations form
a well-known example of the results arrived at by these methods. It is also well known that
using its symmetries one can construct new solutions of a given equation from much simpler
ones.

However, the notion of a symmetry group of transformations acting on the solution space
does not have to be limited only to differential equations. It can be equally well applied to other
types, such as the algebraic and difference ones. The latter arise in many diverse branches of
mathematics and physics, such as discrete geometry, integrable systems, special functions and
orthogonal polynomials, the study of exactly solvable models in statistical mechanics, crystal
lattice theory and many others. The wide range of their applications shows that difference
equations are of equal importance with their differential counterparts. As a result, symmetry
methods have started being applied to the analysis of difference equations, as well.
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In fact, difference equations have already been studied by symmetry methods from various
points of view, see e.g. [5, 7–9, 15, 17, 18, 20, 28], the recent extensive reviews [19, 34] and
references therein. Symmetries of integrable partial difference equations first appeared as
compatible constraints in the work of Nijhoff and Papageorgiou [22]. The motivation was a
specific reduction of the discrete modified Korteweg–de Vries (KdV) equation to a discrete
analog of Painlevé II, in the same spirit as the Painlevé II ordinary differential equation
arises as a similarity reduction of the celebrated partial differential equation of KdV. Further
examples of such compatible constraints for integrable partial difference equations were given
in [11, 21, 23, 32, 33].

In this paper, we present a systematic study on the symmetries and reductions of
autonomous partial difference equations, which are not necessarily integrable. Specifically,
we consider a quite large class of lattice equations defined on an elementary quadrilateral,
which contains the integrable ones classified recently by Adler, Bobenko and Suris in [1]. The
members of this class are characterized by (i) affine linearity and (ii) D4-symmetry, i.e. the
symmetries of the square.

We first prove that each equation in this class admits two, at least, three-point generalized
symmetries. They are determined by a pair of polynomials arising from the equation’s
defining relation. For the generic case, we give the form of the generators of three- and five-
point generalized symmetries, and a greatly simplified form of the corresponding determining
equations. These results also extended to symmetry transformations which act on the lattice
parameters appearing in the equation, as well.

The previous symmetry analysis is then applied to the equations obtained in classification
[1]. The result of this part of our investigation is an exhaustive list of the corresponding
Lie point, three- and five-point generalized symmetry generators. As a final application, we
consider specific symmetry reductions of the discrete potential KdV to ordinary difference
equations, which represent discrete analogs of those of Painlevé.

The paper is organized as follows. Section 2 contains the necessary preliminaries on
symmetries of difference equations and the notation that we use in the following sections. In
section 3, we introduce the family of lattice equations under consideration and its characteristic
properties. The main results of the symmetry analysis are presented in the following four
sections, where the general form of the corresponding symmetry generators is given explicitly.
The Lie-point symmetries are studied in section 4. The three- and five-point generalized
symmetries are presented in sections 5 and 6, respectively. In section 7 we extend the previous
considerations to symmetry transformations acting on the lattice parameters, as well. In
section 8 we present the symmetries of the equations of the classification [1], and section 9
deals with symmetry reductions. We conclude with section 10, where an overall evaluation of
the results obtained in the main body of the paper is presented, along with various perspectives
on the subject. In the appendix, a detailed proof of the proposition of section 5 is given.

2. Preliminaries on symmetries of difference equations

A partial difference equation is a functional relation among the values of a function
u : Z × Z → C (or CP) at different points of the lattice, which in general involves the
independent variables n,m and the lattice spacings α, β, as well, i.e. a relation of the form

E (n,m, u(n,m), u(n + 1,m), u(n,m + 1), . . . ;α, β) = 0. (1)

The analysis of partial difference equations is facilitated by the use of two translation
operators on functions on Z

2, defined by(
S(k)

n u
)
(n,m) = u(n + k,m),

(
S(k)

m u
)
(n,m) = u(n,m + k), where k ∈ Z.
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It is also found useful to introduce the notation

u(0,0) = u(n,m), u(k,l) = u(n + k,m + l), where k, l ∈ Z, (2)

for the values of the function u and this will be adopted from now on.
The notion of a symmetry group of transformations acting on the solution space of a

differential equation is well known. It can be equally well applied to difference equations of
type (1). For details on the subject, we refer the reader to the pioneering work of Maeda [20]
and the clear and extended reviews of Dorodnitsyn [8], Levi and Winternitz [19]. Here we
restricted ourselves to the definitions that are necessary for introducing the notation to be used
in what follows.

Let G be a one-parameter group of transformations acting on the domain of the dependent
variable u(0,0) of a lattice equation, i.e.

G : u(0,0) → �(n,m, u(0,0); ε), ε ∈ C.

We denote by J(k) the forward lattice jet space of order k ∈ N with coordinates (u(i,j)), where
i, j ∈ N and i + j � k. Similarly, one can define the backward lattice jet space of order k,
denoted by J(−k), with coordinates (u(−i,−j)), i, j ∈ N and i +j � k, and in general the k-order
lattice jet space J(k,−k), with coordinates

(
u(±i,±j)

)
, i, j ∈ N and i + j � k. The prolongation

of the group action of G on J(k) is defined by

G(k) : (u(i,j)) → (�(n + i, m + j, u(i,j); ε)). (3)

The infinitesimal generator of the group action of G on the domain of the dependent
variable is given by the vector field

x = R(n,m, u(0,0))∂u(0,0)
,

where the symmetry characteristic R(n,m, u(0,0)) is defined by

R(n,m, u(0,0)) = d

dε
�(n,m, u(0,0); ε)

∣∣∣∣
ε=0

.

The group action is reconstructed by exponentiating that of the vector field x:

�(n,m, u(0,0); ε) = exp(εx)u(0,0).

The infinitesimal generator of the action of G(k) on J(k) is the associated kth order forward
prolonged vector field

x(k) =
k∑

i=0

k−i∑
j=0

(
S(i)

n ◦ S(j)
m R

)
(n,m, u(0,0))∂u(i,j)

.

The transformation group G is a Lie-point symmetry of the lattice equation (1) if it
transforms any solution of (1) to another solution of the same equation. Equivalently,
G is a symmetry of equation (1), if the latter is not affected by the transformation (3).
The infinitesimal criterion for a connected group of transformation G to be a symmetry of
equation (1) is

x(k)(E(n,m, u(0,0), u(1,0), u(0,1), . . .)) = 0. (4)

This should hold for all solutions of equation (1) and, thus, the latter and its consequences
should be taken into account. Equation (4) delivers the most general infinitesimal Lie-point
symmetry of equation (1). The resulting set of infinitesimal generators forms a Lie algebra g

from which the corresponding symmetry group G can be constructed by exponentiation.
A lattice invariant of order k under the action of G is a function I : J(k,−k) → C which

satisfies I (g(k) · (u(±i,±j))) = I (u(±i,±j)) for all g ∈ G and all (u(±i,±j)) ∈ J(k,−k). For
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Figure 1. An elementary quadrilateral.

connected groups of transformations, a necessary and sufficient condition for a function I to be
invariant under the action of G is the annihilation of I by all prolonged infinitesimal generators,
i.e.

x(k,−k)(I ) = 0, (5)

for all x ∈ g.
By relaxing the geometric assumption that the symmetry characteristic R depends on n,m

and u(0,0), only, and allowing R to be a function defined on Z
2 × J(k,−k) for some finite but

unspecified k ∈ N, k � 1, we arrive naturally at the notion of the generalized symmetry.
Symmetry generators of this type cannot be associated with transformation groups acting
geometrically on the domain of the dependent variable. Lowest order (k = 1) generalized
symmetries are given by the following vector field:

v = R(n,m, u(0,0), u(1,0), u(0,1), u(−1,0), u(0,−1))∂u(0,0)
.

3. A class of two-dimensional lattice equations

In this section, we present a class of two-dimensional lattice equations, which involve the
values of a function u at the vertices of an elementary quadrilateral as shown in figure 1.

Specifically, we consider the two-dimensional lattice equations of the form

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0, (6)

where the function Q

• does not depend explicitly on the discrete variables n,m,
• depends explicitly on the values of the unknown function u at the vertices of an elementary

quadrilateral, i.e. ∂u(i,j)
Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) �= 0, where i, j = 0, 1, and may

depend on the parameters α, β of the lattice,
• is linear in each argument (affine linear): ∂2

u(i,j)
Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0,

where i, j = 0, 1,
• and possesses the symmetries of the square (D4-symmetry):

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = εQ(u(0,0), u(0,1), u(1,0), u(1,1);β, α)

= σQ(u(1,0), u(0,0), u(1,1), u(0,1);α, β),

where ε = ±1 and σ = ±1.

The symmetry analysis of the above class of equations is significantly simplified by the
use of certain polynomials arising from the function Q. In the rest of this section, we define
these polynomials and derive some of their properties, in order to make the symmetry analysis
of the following sections more concise.
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To begin with, we note that the linearity of the function Q implies that the functions

h(u(0,0), u(1,0);α, β) = QQ,u(0,1)u(1,1)
− Q,u(0,1)

Q,u(1,1)
, (7a)

h1(u(0,0), u(0,1);α, β) = QQ,u(1,0)u(1,1)
− Q,u(1,0)

Q,u(1,1)
, (7b)

h2(u(0,1), u(1,1);α, β) = QQ,u(0,0)u(1,0)
− Q,u(0,0)

Q,u(1,0)
, (7c)

h3(u(1,0), u(1,1);α, β) = QQ,u(0,0)u(0,1)
− Q,u(0,0)

Q,u(0,1)
, (7d)

are biquadratic polynomials in their two first indicated arguments, and the same holds for the
functions

G(u(0,0), u(1,1);α, β) = QQ,u(1,0)u(0,1)
− Q,u(1,0)

Q,u(0,1)
, (8a)

G1(u(1,0), u(0,1);α, β) = QQ,u(0,0)u(1,1)
− Q,u(0,0)

Q,u(1,1)
. (8b)

In fact, the linearity of the function Q and the above definitions lead immediately to the
properties expressed by the following two lemmas.

Lemma 1. Let the function Q be affine linear. The polynomials defined by (7) and (8) are
constants if and only if the function Q is linear, i.e.

Q = f1(α, β)u(0,0) + f2(α, β)u(1,0) + f3(α, β)u(0,1) + f4(α, β)u(1,1) + f5(α, β). (9)

Proof. If the function Q is of the form (9), then definitions (7) and (8) imply that these
polynomials are constants. Conversely, assuming that these polynomials are constants, we
solve (7) and (8) for the second-order derivatives of Q and take the compatibility conditions
among the resulting equations. This leads to eight first-order partial differential equations for
the function Q. This overdetermined system of partial differential equations implies that Q is
necessarily of the form (9). �

Lemma 2. If the function Q is affine linear, then the relations

h(u(0,0), u(1,0);α, β)h2(u(1,0), u(1,1);α, β) = h1(u(0,0), u(0,1);α, β)h3(u(1,0), u(1,1);α, β)

= G(u(0,0), u(1,1);α, β)G1(u(1,0), u(0,1);α, β) (10)

hold, in view of the equation Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0.

Proof. It follows from the definitions of the functions involved, the affine linearity of the
function Q and by taking into account the equation Q = 0. �

The D4-symmetry of Q implies that the polynomials defined by (7) are symmetric in their
first two arguments and related as follows:

h(u(0,0), u(1,0);α, β) = h1(u(0,0), u(1,0);β, α)

= h2(u(0,0), u(1,0);α, β) = h3(u(0,0), u(1,0);β, α). (11)

Moreover, the functions G and G1, defined by (8), are symmetric in their first pair of arguments
and in (α, β), and they have the same form, i.e.

G1(u(1,0), u(0,1);α, β) = G(u(1,0), u(0,1);α, β). (12)

In this case, equation (10) simplifies to

h(u(0,0), u(1,0))h(u(0,1), u(1,1)) = h(u(0,0), u(0,1))h(u(1,0), u(1,1))

= G(u(0,0), u(1,1))G(u(1,0), u(0,1)). (13)
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Remark 1. In the following, we omit the dependence of the polynomials h,G on the lattice
parameters. It should be noted that when the polynomial h is evaluated at two neighboring
points in the horizontal direction of the lattice, then the parameter dependence is (α, β) and
the order is reversed when h involves two points in the vertical direction.

Remark 2. If the function Q is affine linear and possesses the D4-symmetry, then, following
the proof of lemma 2, one can prove the validity of the following relations:

Q2
,u(0,0)

+
h(u(1,0), u(1,1))G(u(1,0), u(0,1))

h(u(0,0), u(1,0))
= 0, (14a)

Q2
,u(1,1)

+
h(u(0,0), u(0,1))G(u(1,0), u(0,1))

h(u(0,1), u(1,1))
= 0, (14b)

Q,u(1,0)

Q,u(1,1)

− h(u(0,1), u(1,1))

G(u(1,0), u(0,1))
= 0, (14c)

Q,u(0,1)

Q,u(0,0)

− h(u(0,0), u(1,0))

G(u(1,0), u(0,1))
= 0. (14d)

The latter are quite useful in the symmetry analysis of the equations under consideration.

Relations (13) hold, in general, in view of the equation Q = 0. However, in certain cases,
these relations hold identically, i.e. without taking into account the equation Q = 0. In such
cases, the corresponding equations can be linearized using an appropriate transformation.

Proposition 1. Let the function Q be affine linear and possess the D4-symmetry. If the relation

h(u(0,0), u(1,0))h(u(0,1), u(1,1)) − G(u(0,0), u(1,1))G(u(1,0), u(0,1)) = 0 (15)

holds identically, i.e. without taking into account the equation Q = 0, then the polynomials
h,G are factorized as

h(u(0,0), u(1,0);α, β) = p(u(0,0);α, β)p(u(1,0);α, β),

G(u(1,0), u(0,1);α, β) = ±p(u(1,0);α, β)p(u(0,1);α, β),

and the equation Q = 0 is transformed to a linear equation under the transformation

u −→ ũ = T (u) :=
∫

1

p(u;α, β)
du.

Proof. First, we write equation (15) in the form

h(u(0,0), u(1,0))

G(u(1,0), u(0,1))
= G(u(0,0), u(1,1))

h(u(0,1), u(1,1))
.

Differentiating this relation w.r.t. u(1,0) (equivalently w.r.t. u(1,1)), we find that the polynomials
h,G must have the form

h(u(0,0), u(1,0);α, β) = p(u(0,0);α, β)p(u(1,0);α, β),

G(u(1,0), u(0,1);α, β) = ±p(u(1,0);α, β)p(u(0,1);α, β),

where p is a quadratic polynomial in its first argument and symmetric in (α, β).
Now let

ũ = T (u) :=
∫

1

p(u;α, β)
du,
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and

F(ũ(0,0), ũ(1,0), ũ(0,1), ũ(1,1))

= Q · (p(u(0,0);α, β)p(u(1,0);α, β)p(u(0,1);α, β)p(u(1,1);α, β))−1/2.

Using the previous result, it immediately follows that, under the transformation (u,Q) −→
(ũ, F ), the partial differential equations (7) and (8) simplify to the following system:

FF,ũ(0,1)ũ(1,1)
− F,ũ(0,1)

F,ũ(1,1)
= 1,

FF,ũ(1,0)ũ(1,1)
− F,ũ(1,0)

F,ũ(1,1)
= 1,

FF,ũ(0,0)ũ(1,0)
− F,ũ(0,0)

F,ũ(1,0)
= 1,

FF,ũ(0,0)ũ(0,1)
− F,ũ(0,0)

F,ũ(0,1)
= 1,

FF,ũ(1,0)ũ(0,1)
− F,ũ(1,0)

F,ũ(0,1)
= ±1,

FF,ũ(0,0)ũ(1,1)
− F,ũ(0,0)

F,ũ(1,1)
= ±1.

From this it follows that the equation F(ũ(0,0), ũ(1,0), ũ(0,1), ũ(1,1)) = 0 must be linear. �

Example 1. Consider the equation

u(0,0)(u(1,0)u(0,1) + u(1,0)u(1,1) + u(0,1)u(1,1))

+ u(1,0)u(0,1)u(1,1) + u(0,0) + u(1,0) + u(0,1) + u(1,1) = 0,

listed in [14]. One easily finds that, in this case,

h(u(0,0), u(1,0)) = −(
u2

(0,0) − 1
)(

u2
(1,0) − 1

)
,

G(u(1,0), u(0,1)) = −(
u2

(1,0) − 1
)(

u2
(0,1) − 1

)
.

Performing the transformation

u −→ ũ =
∫

du

u2 − 1
= 1

2
log

(
u − 1

u + 1

)
,

or, equivalently,

u = 1 + e2ũ

1 − e2ũ
,

the above equation linearizes to

ũ(0,0) + ũ(1,0) + ũ(0,1) + ũ(1,1) = 0.

On the other hand, if relations (13) do not hold identically, then the equation Q = 0 can
be written as a conservation law [30]. Specifically,

Proposition 2. Let the function Q be affine linear and possess the D4-symmetry. If the relation

h(u(0,0), u(1,0))h(u(0,1), u(1,1)) = h(u(0,0), u(0,1))h(u(1,0), u(1,1)) (16)

does not hold identically, then the equation Q = 0 can be written in the form of a non-trivial
conservation law

(Sm − id)F1(n,m, u(0,0), u(1,0)) = (Sn − id)F2(n,m, u(0,0), u(0,1)), (17)

where

F1(n,m, u(0,0), u(1,0)) = (−1)n+m ln h(u(0,0), u(1,0)), (18a)

F2(n,m, u(0,0), u(0,1)) = (−1)n+m ln h(u(0,0), u(0,1)). (18b)

Proof. It follows by combining (17) with (18) and taking into account relation (16). �
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4. Lie-point symmetries

In this section we study the Lie-point symmetries of the two-dimensional lattice equations
under consideration. Let

x = φ(n,m, u(0,0))∂u(0,0)

be the generator of a point-symmetry transformation of the equation

Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0.

The infinitesimal symmetry criterion

x(2)(Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β))|Q=0 = 0,

where

x(2) =
1∑

i=0

1∑
j=0

φ(n + i, m + j, u(i,j);α, β)∂u(i,j)
,

implies that the determining equation

Q,u(0,0)
φ(n,m, u(0,0);α, β) + Q,u(1,0)

φ(n + 1,m, u(1,0);α, β) + Q,u(0,1)
φ(n,m + 1, u(0,1);α, β)

+ Q,u(1,1)
φ(n + 1,m + 1, u(1,1);α, β) = 0, (19)

should hold on every solution of the equation Q = 0.
Since the function Q is linear in u(1,1), the equation Q = 0 can be uniquely solved for

u(1,1) in terms of u(0,0), u(1,0) and u(0,1). Using the relations

Q,u(1,0)

Q,u(0,0)

= h(u(0,0), u(0,1))

G(u(1,0), u(0,1))
,
Q,u(0,1)

Q,u(0,0)

= h(u(0,0), u(1,0))

G(u(1,0), u(0,1))
,
Q,u(1,1)

Q,u(0,0)

= − Q2
,u(1,1)

G(u(1,0), u(0,1))
, (20)

we eliminate u(1,1) from equation (19) and arrive at

φ(n,m, u(0,0);α, β) +
h(u(0,0), u(0,1))

G(u(1,0), u(0,1))
φ(n + 1,m, u(1,0);α, β)

+
h(u(0,0), u(1,0))

G(u(1,0), u(0,1))
φ(n,m + 1, u(0,1);α, β)

= Q2
,u(1,1)

G(u(1,0), u(0,1))
φ(n + 1,m + 1, u(1,1);α, β). (21)

Since h is, in general, a quadratic polynomial of u(0,0), differentiating the determining
equation (21) three times w.r.t. u(0,0) and once w.r.t. u(1,0), we arrive at

D3
u(0,0)

Du(1,0)

(
Q2

,u(1,1)

G(u(1,0), u(0,1))
φ(n + 1,m + 1, u(1,1);α, β)

)
= 0, (22)

where Dj denotes the total derivative operator, i.e.

Dj = ∂j + (∂ju(1,1))∂u(1,1)
, where j = u(0,0), u(1,0), u(0,1).

Writing equation (22) explicitly, one arrives at

∂u(1,1)

(
h(u(0,1), u(1,1))

2∂3
u(1,1)

φ(n + 1,m + 1, u(1,1);α, β)
) = 0. (23)

The last equation splits into the following system: h(0, u(1,1)) h,u(1,1)
(0, u(1,1))

h,u(0,1)
(0, u(1,1)) h,u(0,1)u(1,1)

(0, u(1,1))

h,u(0,1)u(0,1)
(0, u(1,1)) h,u(0,1)u(0,1)u(1,1)

(0, u(1,1))

 (
∂4
u(1,1)

φ

2∂3
u(1,1)

φ

)
=

0
0
0

 , (24)
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where we have omitted the arguments of the function φ(n+1,m+1, u(1,1);α, β). If the matrix
of the system (24) has rank equal to 2, then the latter has the unique solution

φ(n,m, u(0,0);α, β) = A2(n,m;α, β)u2
(0,0) + A1(n,m;α, β)u(0,0) + A0(n,m;α, β).

In the degenerate case, where the matrix of the system (24) has rank equal to 1, the
function h(u(0,1), u(1,1)) separates variables, i.e.

h(u(0,1), u(1,1)) = h0(u(0,1))h0(u(1,1)), (25)

where the function h0 is, in general, a quadratic polynomial of its argument. In this case, the
system (24) reduces to a single equation, namely

∂u(1,1)

(
h0(u(1,1))

2∂3
u(1,1)

φ(n + 1,m + 1, u(1,1);α, β)
) = 0,

which integrated once yields

∂3
u(1,1)

φ(n + 1,m + 1, u(1,1);α, β) = A3(n + 1,m + 1;α, β)

h0(u(1,1))2
. (26)

Once the function Q is given, the last equation can be easily solved leading to the general form
of the corresponding symmetry characteristic.

Finally, the substitution of the resulting symmetry characteristic into equation (21) and the
use of equation Q = 0 to eliminate u(1,1) lead to a linear overdetermined system of difference
equations for the unknown functions Ai(n,m;α, β). The solution of the latter delivers the
Lie-point symmetries of the lattice equation Q = 0.

Remark 3. Actually, the above symmetry analysis can be immediately extended to the case
where the function Q is affine linear but not D4 symmetric. The procedure followed above
leads to, essentially, the same equations. They are the ones obtained from equations (21) and
(23) by making the replacements

h(u(0,0), u(1,0)) → h(u(0,0), u(1,0);α, β), h(u(0,0), u(0,1)) → h1(u(0,0), u(0,1);α, β),

G(u(1,0), u(0,1)) → G1(u(1,0), u(0,1);α, β),

and

h(u(0,1), u(1,1)) → h2(u(0,1), u(1,1);α, β),

respectively.

5. Three-point generalized symmetries

In this section, we consider more general symmetries than the point symmetries presented in the
preceding section. More precisely, we search for generalized symmetries with characteristics
of the form R(n,m, u(0,0), u(1,0), u(−1,0);α, β). Once the symmetries of this type are found,
one can construct similar symmetry characteristics in the other direction of the lattice, simply
by interchanging mutually the lattice variables and parameters. This follows from the
D4-symmetry of the function Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β). Thus, it suffices to restrict
our considerations to symmetry characteristics of the form R(n,m, u(0,0), u(1,0), u(−1,0);α, β),
see figure 2. For brevity, we refer to this type of symmetries as three-point generalized
symmetries.

The three-point generalized symmetry analysis for the equations under consideration is
summarized in the following.
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u(−1,0) u(0,0) u(1,0)

Figure 2. Three consecutive horizontal lattice points.

Proposition 3. Every two-dimensional lattice equation Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) =
0, where the function Q is affine linear and possesses the D4-symmetry, admits a three-point
generalized symmetry with generator

vn =
(

h(u(0,0), u(1,0);α, β)

u(1,0) − u(−1,0)

− 1

2
h,u(1,0)

(u(0,0), u(1,0);α, β)

)
∂u(0,0)

.

Moreover, in the generic case, where the matrix

G =
 h(x, y) G(x, z) G(x,w)

h,x(x, y) G,x(x, z) G,x(x,w)

h,xx(x, y) G,xx(x, z) G,xx(x,w)

∣∣∣∣∣∣
x=0

(27)

has rank 3, every three-point generalized symmetry generator necessarily has the form

Vn = a(n;α, β)vn + 1
2φ(n,m, u(0,0);α, β)∂u(0,0)

,

where the functions a(n;α, β), φ(n,m, u(0,0);α, β) satisfy equation (28), below.
The D4-symmetry of the function Q implies that the vector fields resulting from the mutual

replacements

n ←→ m, α ←→ β, u(i,0) ←→ u(0,i),

in vn, Vn, are the generators of the three-point symmetries in the vertical direction.

Since the proof of the proposition is involved, we give here only a sketch of the proof and
leave the details for the appendix.

(i) We differentiate the determining equation w.r.t. to u(1,−1) and u(1,0) and find that an
admissible symmetry characteristic has the form

A(n,m;α, β)

(
h(u(0,0), u(1,0);α, β)

u(1,0) − u(−1,0)

− 1

2
h,u(1,0)

(u(0,0), u(1,0);α, β)

)
+

φ(n,m, u(0,0), u(1,0);α, β)

2
,

where A and φ are arbitrary functions of their arguments.
(ii) Next, we prove that the function A is independent of the discrete variable m and,

consequently, the determining equation is independent of u(−1,0) and u(−1,1).
(iii) Then, we show that the determining equation, apart from the function φ, is also

independent of u(2,0).
(iv) Finally, we eliminate the value u(1,1) from the determining equation, using the equation

Q = 0. At this point, we conclude that every equation, which is affine linear and possesses
the symmetries of the square, admits a three-point generalized symmetry with generator

vn =
(

h(u(0,0), u(1,0);α, β)

u(1,0) − u(−1,0)

− 1

2
h,u(1,0)

(u(0,0), u(1,0);α, β)

)
∂u(0,0)

.
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u(0,0)
u(1,0)u(−1,0)

u(0,1)

u(0,−1)

Figure 3. Cross configuration.

(v) In the generic case, where the matrix G has rank 3, we prove that the characteristic
R(n,m, u(0,0), u(1,0), u(−1,0);α, β) of the symmetry generator necessarily has the form

R = a(n;α, β)

(
h(u(0,0), u(1,0);α, β)

u(1,0) − u(−1,0)

− 1

2
h,u(1,0)

(u(0,0), u(1,0);α, β)

)
+

φ(n,m, u(0,0);α, β)

2
,

where the functions a(n;α, β), φ(n,m, u(0,0);α, β) satisfy the simplified determining
equation

(a(n;α, β) − a(n + 1;α, β))h(u(0,0), u(1,0))
2∂u(1,0)

(
G(u(1,0), u(0,1))

h(u(0,0), u(1,0))

)
+ G(u(1,0), u(0,1))φ(n,m, u(0,0);α, β) + h(u(0,0), u(0,1))φ(n + 1,m, u(1,0);α, β)

+ h(u(0,0), u(1,0))φ(n,m + 1, u(0,1);α, β) = Q2
,u(1,1)

φ(n + 1,m + 1, u(1,1);α, β).

(28)

6. Five-point generalized symmetries

In this section we consider symmetries with characteristic depending on the values of u
assigned on five vertices, which form a cross configuration on the lattice as shown in
figure 3. We refer to this type of symmetries as five-point generalized symmetries. Such
symmetry generators exist since any linear combination of the form c1vn + c2vm, where vn, vm

are given in the previous section, is also a symmetry generator.
Let

w(2) =
1∑

i=0

1∑
j=0

R(n + i, m + j, u(i,j), u(i+1,j), u(i,j+1), u(i−1,j), u(i,j−1);α, β)∂u(i,j)

be the prolonged generator of a generalized symmetry of the equation Q = 0. Acting on the
latter with w(2), we obtain the determining equation

Q,u(0,0)
R(n,m, u(0,0), u(1,0), u(0,1), u(−1,0), u(0,−1);α, β)

+ Q,u(1,0)
R(n + 1,m, u(1,0), u(2,0), u(1,1), u(0,0), u(1,−1);α, β)

+ Q,u(0,1)
R(n,m + 1, u(0,1), u(1,1), u(0,2), u(−1,1), u(0,0);α, β)

+ Q,u(1,1)
R(n + 1,m + 1, u(1,1), u(2,1), u(1,2), u(0,1), u(1,0);α, β) = 0. (29)
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Since u(2,1) depends on u(2,0) through the equation Q(u(1,0), u(2,0), u(1,1), u(2,1);α, β) = 0,
and u(1,2) depends on u(0,2) through the equation Q(u(0,1), u(1,1), u(0,2), u(1,2);α, β) = 0,
differentiating equation (29) once w.r.t. u(2,0) and then w.r.t. u(0,2), we arrive at

R,u(2,1)u(1,2)
(n + 1,m + 1, u(1,1), u(2,1), u(1,2), u(0,1), u(1,0);α, β)

∂u(2,1)

∂u(2,0)

∂u(1,2)

∂u(0,2)

= 0. (30a)

On the other hand, u(−1,0) depends on u(−1,1) through the equation Q(u(−1,0), u(0,0), u(−1,1),

u(0,1);α, β) = 0, and u(0,−1) depends on u(1,−1) through the equation Q(u(0,−1), u(1,−1),

u(0,0), u(1,0);α, β) = 0. Thus, the differentiation of equation (29) once w.r.t. u(−1,1) and then
w.r.t. u(1,−1) yields

R,u(−1,0)u(0,−1)
(n,m, u(0,0), u(1,0), u(0,1), u(−1,0), u(0,−1);α, β)

∂u(−1,0)

∂u(−1,1)

∂u(0,−1)

∂u(1,−1)

= 0. (30b)

Moreover, differentiating equation (29) once w.r.t. u(2,0) (respectively u(0,2)) and then w.r.t.
u(1,−1) (respectively u(−1,1)), we obtain

R,u(2,0)u(1,−1)
(n + 1,m, u(1,0), u(2,0), u(1,1), u(0,0), u(1,−1);α, β) = 0, (30c)

R,u(0,2)u(−1,1)
(n,m + 1, u(0,1), u(1,1), u(0,2), u(−1,1), u(0,0);α, β) = 0. (30d)

Equations (30) imply that

R(n,m, u(0,0), u(1,0), u(0,1), u(−1,0), u(0,−1);α, β) = R1(n,m, u(0,0), u(1,0), u(−1,0);α, β)

+ R2(n,m, u(0,0), u(0,1), u(0,−1);α, β).

Substituting the above relation into the determining equation (29) and following the steps of
the proof in section 5, we find that the function R1 has the form

R1(n,m, u(0,0), u(1,0), u(−1,0);α, β)

= A(n,m;α, β)
h(u(0,0), u(1,0);α, β)

u(1,0) − u(−1,0)

+ φ1(n,m, u(0,0), u(1,0);α, β),

where A,φ1 are arbitrary functions of their arguments. In a similar manner, one finds that

R2(n,m, u(0,0), u(0,1), u(0,−1);α, β)

= B(n,m;α, β)
h(u(0,0), u(0,1);β, α)

u(0,1) − u(0,−1)

+ φ2(n,m, u(0,0), u(0,1);α, β),

where B, φ2 are arbitrary functions of their arguments.
Setting

φ1 = − 1
2A(n,m;α, β)h,u(1,0)

(u(0,0), u(1,0);α, β) + 1
2ψ1(n,m, u(0,0), u(1,0);α, β),

φ2 = − 1
2B(n,m;α, β)h,u(0,1)

(u(0,0), u(0,1);β, α) + 1
2ψ2(n,m, u(0,0), u(0,1);α, β),

we substitute the above relations into the determining equation and differentiate the result
w.r.t. u(2,0) or u(0,2), respectively. These lead to the following constraints:

A(n + 1,m;α, β) − A(n + 1,m + 1;α, β) = 0,

B(n,m + 1;α, β) − B(n + 1,m + 1;α, β) = 0,

which imply that

A(n,m;α, β) = a(n;α, β), B(n,m;α, β) = b(m;α, β),

respectively.
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In the generic case, the rank of the matrix G implies that the functions ψi are independent
of their fourth arguments, and the determining equation simplifies to

(a(n;α, β) − a(n + 1;α, β))h(u(0,0), u(1,0))
2∂u(1,0)

(
G(u(1,0), u(0,1))

h(u(0,0), u(1,0))

)
+ (b(m;α, β) − b(m + 1;α, β))h(u(0,0), u(0,1))

2∂u(0,1)

(
G(u(1,0), u(0,1))

h(u(0,0), u(0,1))

)
+ G(u(1,0), u(0,1))ψ(n,m, u(0,0);α, β) + h(u(0,0), u(0,1))ψ(n + 1,m, u(1,0);α, β)

+ h(u(0,0), u(1,0))ψ(n,m + 1, u(0,1);α, β) = Q2
,u(1,1)

ψ(n + 1,m + 1, u(1,1);α, β), (31)

where we have set

ψ1(n,m, u(0,0);α, β) + ψ2(n,m, u(0,0);α, β) = ψ(n,m, u(0,0);α, β),

since they appear additively in the characteristic R.
The form of the function ψ is obtained in the same way as the one used to obtain the

general form of the characteristic of a Lie-point symmetry generator. The substitution of the
relevant form of the function ψ into the determining equation (31) and the usage of equation
Q = 0 to eliminate u(1,1) in the resulting equation lead to an overdetermined linear system
of difference equations for the unknown functions a(n;α, β), b(m;α, β) and the functions
Ai(n,m;α, β), which occur in the general form of the function ψ . The general solution of this
system delivers the five-point generalized symmetries, as well as all the three-point generalized
and Lie-point symmetries. Thus, equation (31) is the most general equation for determining
the symmetries of a two-dimensional lattice equation, under the specific assumptions. The
above analysis summarizes to the following.

Proposition 4. Consider the equation Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0, where function
Q is affine linear and possesses the D4-symmetry. In the generic case, where the matrix G
defined by (27) has rank 3, the characteristic R(n,m, u(0,0), u(1,0), u(0,1), u(−1,0), u(0,−1);α, β)

of a five-point symmetry generator has necessarily the form

R = a(n;α, β)P (u(0,0), u(1,0), u(−1,0);α, β)

+ b(m;α, β)P (u(0,0), u(0,1), u(0,−1);β, α) +
ψ(n,m, u(0,0);α, β)

2
,

where

P(u, x, y;α, β) = h(u, x;α, β)

x − y
− 1

2
h,x(u, x;α, β),

and the functions a(n;α, β), b(m;α, β) and ψ(n,m, u(0,0);α, β) satisfy equation (31).

7. Extended symmetries on the lattice parameters

It has been observed [22] that certain lattice equations admit compatible systems of differential–
difference equations, with the lattice parameters α, β playing the role of the additional
(continuous) independent variables. Such a compatible system arises from the invariance
condition of the lattice equation under the action of a generalized symmetry transformation
extended to the lattice parameters in a specific way.

As an example, let us consider the lattice potential KdV equation

(u(0,0) − u(1,1))(u(1,0) − u(0,1)) − α + β = 0.
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Obviously, this equation is not invariant under the scalings

(u(0,0), u(1,0), u(0,1), u(1,1)) → (eεu(0,0), eεu(1,0), eεu(0,1), eεu(1,1)).

However, if it is further assumed that the parameters α, β change according to

(α, β) → (e2εα, e2εβ),

then the equation does remain invariant. In other words, the lattice potential KdV admits the
symmetry generated by

u(0,0)∂u(0,0)
+ 2α∂α + 2β∂β.

These observations make it clear that it is useful to extend our considerations to symmetry
transformations acting on the lattice parameters, as well. In this spirit, the present section is
devoted to symmetry transformations of the equations under study, which are generated by
vector fields of the form

w = R(n,m, u(0,0), u(1,0), u(0,1), u(−1,0), u(0,−1);α, β)∂u(0,0)

+ ξ(n,m;α, β)∂α + ζ(n,m;α, β)∂β. (32)

Acting with the prolonged symmetry generator on the equation and following the analysis
in the preceding sections, we find, in the generic case, that the component in the u-direction
of w takes the form

a(n,m;α, β)P (u(0,0), u(1,0), u(−1,0);α, β)

+ b(m;α, β)P (u(0,0), u(0,1), u(0,−1);β, α) + 1
2ψ(n,m, u(0,0);α, β),

where

P(u, x, y;α, β) = h(u, x;α, β)

x − y
− 1

2
h,x(u, x;α, β),

and the functions a(n;α, β), b(m;α, β), ψ(n,m, u(0,0);α, β), ξ(n,m;α, β) and ζ(n,m;α, β)

satisfy the determining equation

(a(n;α, β) − a(n + 1;α, β))h(u(0,0), u(1,0))
2∂u(1,0)

(
G(u(1,0), u(0,1))

h(u(0,0), u(1,0))

)

+ (b(m;α, β) − b(m + 1;α, β)) h(u(0,0), u(0,1))
2∂u(0,1)

(
G(u(1,0), u(0,1))

h(u(0,0), u(0,1))

)
+ G(u(1,0), u(0,1))ψ(n,m, u(0,0);α, β) + h(u(0,0), u(0,1))ψ(n + 1,m, u(1,0);α, β)

+ h(u(0,0), u(1,0))ψ(n,m + 1, u(0,1);α, β) − Q2
,u(1,1)

ψ(n + 1,m + 1, u(1,1);α, β)

− 2Q,αQ,u(1,1)
ξ(n,m;α, β) − 2Q,βQ,u(1,1)

ζ(n,m;α, β) = 0.

Again the form of the function ψ is obtained in the manner described in the previous
section, by taking into account that

D3
u(0,0)

(Q,iQ,u(1,1)
) = 0, i = α, β,

which follows from the linearity of the function Q. The general solution of the above
determining equation will give us the Lie-point symmetries, the three- and the five-point
generalized symmetries.
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8. Symmetries of lattice equations with the consistency property

In this section, we apply the results of previous sections to the symmetry analysis to the class
of integrable nonlinear equations obtained by Adler, Bobenko and Suris (ABS) recently in [1].
Our results are applicable to the ABS equations, because the latter are affine linear and possess
the symmetries of the square. They are not linearizable and satisfy the condition rankG = 3,
where G is given by (27). Moreover, these equations are integrable in the sense that they
satisfy the three-dimensional consistency property. The ABS equations are given by entries
(H1–H3) and (Q1–Q4) of the following list:

(H1) (u(0,0) − u(1,1))(u(1,0) − u(0,1)) − α + β = 0 (33)

(H2) (u(0,0) − u(1,1))(u(1,0) − u(0,1)) + (β − α)(u(0,0) + u(1,0) + u(0,1) + u(1,1))

−α2 + β2 = 0 (34)

(H3) α(u(0,0)u(1,0) + u(0,1)u(1,1)) − β(u(0,0)u(0,1) + u(1,0)u(1,1)) + δ(α2 − β2) = 0 (35)

(Q1) α(u(0,0) − u(0,1))(u(1,0) − u(1,1)) − β(u(0,0) − u(1,0))(u(0,1) − u(1,1))

+ δ2αβ(α − β) = 0 (36)

(Q2) α(u(0,0) − u(0,1))(u(1,0) − u(1,1)) − β(u(0,0) − u(1,0))(u(0,1) − u(1,1))

+ αβ(α − β)(u(0,0) + u(1,0) + u(0,1) + u(1,1)) − αβ(α − β)(α2 − αβ + β2) = 0

(37)

(Q3) (β2 − α2)(u(0,0)u(1,1) + u(1,0)u(0,1)) + β(α2 − 1)(u(0,0)u(1,0) + u(0,1)u(1,1))

−α(β2 − 1)(u(0,0)u(0,1) + u(1,0)u(1,1)) − δ2(α2 − β2)(α2 − 1)(β2 − 1)

4αβ
= 0

(38)

(Q4) a0u(0,0)u(1,0)u(0,1)u(1,1)

+ a1(u(0,0)u(1,0)u(0,1) + u(1,0)u(0,1)u(1,1) + u(0,1)u(1,1)u(0,0) + u(1,1)u(0,0)u(1,0))

+ α2(u(0,0)u(1,1) + u(1,0)u(0,1)) + ā2(u(0,0)u(1,0) + u(0,1)u(1,1))

+ ã2(u(0,0)u(0,1) + u(1,0)u(1,1)) + a3(u(0,0) + u(1,0) + u(0,1) + u(1,1)) + a4 = 0.

(39)

Here α, β are the lattice parameters and the ai’s in Q4 are determined by the relations

a0 = a + b, a1 = −aβ − bα, a2 = aβ2 + bα2,

ā2 = ab(a + b)

2(α − β)
+ aβ2 −

(
2α2 − g2

4

)
b, ã2 = ab(a + b)

2(β − α)
+ bα2 −

(
2β2 − g2

4

)
a,

a3 = g3

2
a0 − g2

4
a1, a4 = g2

2

16
a0 − g3a1,

with

a2 = r(α), b2 = r(β), r(x) = 4x3 − g2x − g3.
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In fact, the results of sections 4–6 allow us to obtain all the Lie-point symmetries, the
three- and five-point generalized symmetries of the ABS equations. The generators of these
symmetries are given in the following list. We give the corresponding generators, using the
symbol of each equation employed in the previous list.

• H1
Point symmetries: x1 = ∂u(0,0)

, x2 = (−1)n+m∂u(0,0)
, x3 = (−1)n+mu(0,0)∂u(0,0)

.

Three-point generalized symmetries:

v1 = 1

u(1,0) − u(−1,0)

∂u(0,0)
, v2 = nv1 +

u(0,0)

2(α − β)
∂u(0,0)

,

v3 = 1

u(0,1) − u(0,−1)

∂u(0,0)
, v4 = mv3 − u(0,0)

2(α − β)
∂u(0,0)

.

• H2
Point symmetries: x1 = (−1)n+m∂u(0,0)

.

Three-point generalized symmetries:

v1 = u(1,0) + 2u(0,0) + u(−1,0) + 2α

u(1,0) − u(−1,0)

∂u(0,0)
, v2 = nv1 +

2u(0,0) + β

2(α − β)
∂u(0,0)

,

v3 = u(1,0) + 2u(0,0) + u(0,−1) + 2β

u(0,1) − u(0,−1)

∂u(0,0)
, v4 = mv3 − 2u(0,0) + α

2(α − β)
∂u(0,0)

.

• H3

(i) δ = 0.
Point symmetries: x1 = u(0,0)∂u(0,0)

, x2 = (−1)n+mu(0,0)∂u(0,0)
.

Three-point generalized symmetries:

v1 = u(0,0)(u(1,0) + u(−1,0))

u(1,0) − u(−1,0)

∂u(0,0)
, v2 = u(0,0)(u(0,1) + u(0,−1))

u(0,1) − u(0,−1)

∂u(0,0)
.

Five-point generalized symmetries: w = nv1 + mv3.

(ii) δ �= 0.
Point symmetries: x1 = (−1)n+mu(0,0)∂u(0,0)

.

Three-point generalized symmetries:

v1 = u(0,0)(u(1,0) + u(−1,0)) + 2αδ

u(1,0) − u(−1,0)

∂u(0,0)
, v2 = u(0,0)(u(0,1) + u(0,−1)) + 2βδ

u(0,1) − u(0,−1)

∂u(0,0)
.

Five-point generalized symmetries: w = nv1 + mv2 − u(0,0)

2 ∂u(0,0)
.

• Q1

(i) δ = 0
Point symmetries: x1 = u2

(0,0)∂u(0,0)
, x2 = u(0,0)∂u(0,0)

, x3 = ∂u(0,0)
.

Three-point generalized symmetries:

v1 = (u(1,0) − u(0,0))(u(0,0) − u(−1,0))

u(1,0) − u(−1,0)

∂u(0,0)
,

v2 = (u(0,1) − u(0,0))(u(0,0) − u(0,−1))

u(0,1) − u(0,−1)

∂u(0,0)
.

Five-point generalized symmetries: w = nv1 + mv2.

(ii) δ �= 0
Point symmetries: x1 = ∂u(0,0)

.
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Three-point generalized symmetries:

v1 = (u(1,0) − u(0,0))(u(0,0) − u(−1,0)) + α2δ2

u(1,0) − u(−1,0)

∂u(0,0)
,

v2 = (u(0,1) − u(0,0))(u(0,0) − u(0,−1)) + β2δ2

u(0,1) − u(0,−1)

∂u(0,0)
.

Five-point generalized symmetries: w = nv1 + mv2 − u(0,0)∂u(0,0)
.

• Q2
Three-point generalized symmetries:

v1 = (u(1,0) − u(0,0))(u(0,0) − u(−1,0)) + (u(1,0) + 2u(0,0) + u(−1,0))α
2 − α4

u(1,0) − u(−1,0)

∂u(0,0)
,

v2 = (u(0,1) − u(0,0))(u(0,0) − u(0,−1)) + (u(0,1) + 2u(0,0) + u(0,−1))β
2 − β4

u(0,1) − u(0,−1)

∂u(0,0)
.

Five-point generalized symmetries: w = nv1 + mv2 − 2u(0,0)∂u(0,0)
.

• Q3
Point symmetries: if δ = 0, then it admits one point symmetry with generator
x1 = u(0,0)∂u(0,0)

. Otherwise, there are no point symmetries.
Three-point generalized symmetries:

v1 = 2α(α2 + 1)u(0,0)(u(1,0) + u(−1,0)) − 4α2
(
u2

(0,0) + u(1,0)u(−1,0)

) − (α2 − 1)2δ2

u(1,0) − u(−1,0)

∂u(0,0)
,

v2 = 2β(β2 + 1)u(0,0)(u(0,1) + u(0,−1)) − 4β2
(
u2

(0,0) + u(0,1)u(0,−1)

) − (β2 − 1)2δ2

u(0,1) − u(0,−1)

∂u(0,0)
.

• Q4
Three-point generalized symmetries:

v1 = (u(1,0) − u(−1,0))f,u(1,0)
(u(0,0), u(1,0), α) − 2f (u(0,0), u(1,0), α)

u(1,0) − u(−1,0)

∂u(0,0)
,

v2 = (u(0,1) − u(0,−1))f,u(0,1)
(u(0,0), u(0,1), β) − 2f (u(0,0), u(0,1), β)

u(0,1) − u(0,−1)

∂u(0,0)
,

where

f (u(0,0), u(1,0), α) =
(

u(0,0)u(1,0) + α(u(0,0) + u(1,0)) +
g2

4

)2

− (u(0,0) + u(1,0) + α)(4αu(0,0)u(1,0) − g3).

The extended symmetry transformations acting on the lattice parameters along with the
corresponding determining equation have been presented in section 7. Using these results,
we find that the integrable lattice equations obtained by Adler, Bobenko and Suris admit the
extended symmetries of the following list.

• H1
Point symmetries: x4 = u(0,0)∂u(0,0)

+ 2α∂α + 2β∂β, x5 = ∂α + ∂β.

Three-point generalized symmetries:

v5 = A(n)v1 + (A(n) − A(n + 1))∂α, v6 = B(m)v3 + (B(m) − B(m + 1))∂β.
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• H2
Point symmetries: x2 = u(0,0)∂u(0,0)

+ α∂α + β∂β, x3 = ∂u(0,0)
− 2∂α − 2∂β .

Three-point generalized symmetries:

v5 = A(n)v1 + (A(n) − A(n + 1))∂α, v6 = B(m)v3 + (B(m) − B(m + 1))∂β.

• H3

(i) δ = 0.
Point symmetries: x3 = α∂α + β∂β.

Three-point generalized symmetries:
v3 = A(n)v1 − (A(n) − A(n + 1))α∂α, v4 = B(m)v2 − (B(m) − B(m + 1))β∂β.

(ii) δ �= 0.
Point symmetries: x2 = u(0,0)∂u(0,0)

+ 2α∂α + 2β∂β.

Three-point generalized symmetries:
v3 = A(n)v1 − (A(n) − A(n + 1))α∂α, v4 = B(m)v2 − (B(m) − B(m + 1))β∂β.

• Q1

(i) δ = 0.
Point symmetries: x4 = α∂α + β∂β .
Three-point generalized symmetries:
v3 = A(n)v1 − (A(n) − A(n + 1))α∂α, v4 = B(m)v2 − (B(m) − B(m + 1))β∂β.

(ii) δ �= 0.
Point symmetries: x2 = u(0,0)∂u(0,0)

+ α∂α + β∂β.

Three-point generalized symmetries:
v3 = A(n)v1 − (A(n) − A(n + 1))α∂α, v4 = B(m)v2 − (B(m) − B(m + 1))β∂β.

• Q2
Point symmetries: x1 = 2u(0,0)∂u(0,0)

+ α∂α + β∂β.

Three-point generalized symmetries:

v3 = A(n)v1 − (A(n) − A(n + 1))α∂α, v4 = B(m)v2 − (B(m) − B(m + 1))β∂β.

• Q3
Three-point generalized symmetries:

v3 = A(n)v1 − 2(A(n) − A(n + 1))α2(α2 − 1)∂α,

v4 = B(m)v2 − 2(B(m) − B(m + 1))β2(β2 − 1)∂β.

• Q4
Three-point generalized symmetries:

v3 = A(n)v1 + (A(n) − A(n + 1))(4α3 − g2α − g3)∂α,

v4 = B(m)v2 + (B(m) − B(m + 1))(4β3 − g2β − g3)∂β.

Remark 4. The existence of extended point symmetries implies that the lattice equation can be
reduced to one which depends on a combination of the lattice parameters or it is independent
of them. However, the resulting equation does not possess the D4-symmetry. For example,
consider equation H1 and its symmetry generators x4, x5. Using the invariance under the
action of x4, x5, one introduces the transformation u(0,0) �→ u(0,0)

√
α − β, in terms of which,

equation (H1) becomes

Q(u(0,0), u(1,0), u(0,1), u(1,1)) = (u(0,0) − u(1,1))(u(1,0) − u(0,1)) − 1 = 0.

We note that the resulting equation is not D4-symmetric, since

Q(u(0,0), u(1,0), u(0,1), u(1,1)) �= Q(u(0,0), u(0,1), u(1,0), u(1,1)).
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9. Symmetry reductions to discrete analogs of the Painlevé equations

In the same way as in the case of the partial differential equations, the symmetries of a
partial difference equation provide an effective means of constructing (whole classes of)
special solutions. They are the ones that retain their form when acted on by some of the
transformations leaving the equation invariant. Hence, they are referred to as group invariant
solutions.

Group invariant solutions of certain integrable lattice equations are known to be associated
with integrable mappings and discrete versions of the Painlevé equations. Reductions to
integrable mappings first appeared in [24], where the periodic boundary value problems for
the lattice potential KdV were studied (see also [6, 27]). On the other hand, reductions to
discrete Painlevé equations originally appeared in [22], where the higher symmetries of the
latter equation were exploited. For a more recent account on the subject we refer to [11, 13,
21, 23].

Here, we use the results on Lie-point and generalized symmetries obtained above to study
group invariant solutions of the class of lattice equations introduced in section 3, as well as
initial value problems associated with them. More specifically, we study solutions of the lattice
equations under consideration, which are characterized by their invariance under a five-point
generalized symmetry. The existence of such solutions essentially follows from the fact that
every equation in the class admits a five-point generalized symmetry with generator vn + λvm

(see proposition 3). In addition, we relate the associated symmetry reductions to specific
Cauchy problems admitting a unique solution.

In the generic case, the reductions under study lead to four-dimensional mappings.
Nevertheless, when the lattice equation admits a Lie-point symmetry which is compatible with
the five-point symmetry constraint, the corresponding mapping reduces to a three-dimensional
one.

The results just described can be applied equally well to all the equations introduced in
section 3. However, in order to remain within the framework of objectives of the present
paper, we restrict ourselves to presenting the details of an illustrative example, only. More
specifically, we give a detailed account of applying our method to the representative case of
the lattice potential KdV (H1).

9.1. Symmetry reductions and Cauchy problems

Let Q = 0 be a partial difference equation and v = R[u]∂u(0,0)
an infinitesimal generator of a

symmetry transformation acting on the space of the dependent variable u, only. The square
brackets in the symmetry characteristic R[u] mean that, the latter is, in general, a function of
(n,m, u(0,0)) and the shifted values of u in both directions of the lattice up to some order k,
i.e. R : Z

2 × J(k,−k) �→ C for some fixed k ∈ N.

Definition 1. A function u : Z
2 �→ C is called an invariant solution of the lattice equation

Q = 0 under the symmetry v, if it satisfies the lattice equation Q = 0 and the compatible
constraint v(u) = 0 (equivalently R[u] = 0).

A natural question is whether non-trivial solutions of this kind do really exist. Consider
a generic lattice equation Q = 0 of the form (6), where Q satisfies the properties of section 3.
According to proposition 3, the lattice equation Q = 0 always admits two generalized
symmetry generators vn, vm. Thus, the invariant solutions under the symmetry generator

vC = vn + λvm
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Figure 4. A Cauchy problem on the lattice.

satisfy the lattice equation and the compatible symmetry constraint

C[u] := R(u(0,0), u(1,0), u(−1,0);α, β) + λR(u(0,0), u(0,1), u(0,−1);β, α) = 0, (40)

where

R(u, x, y;α, β) = h(u, x;α, β)

x − y
− 1

2
h,x(u, x;α, β).

Let us now consider the following initial value problem. Given the values of u assigned
on the four points depicted with black in figure 4, one can determine uniquely the values of
u along three vertical columns of the square grid, by using the lattice equation (◦ points) and
the symmetry constraint (+ points). It should be noted that, due to the affine linearity of the
function Q, the symmetry constraint (40) can be solved uniquely for each one of the values
u(−1,0), u(1,0), u(0,−1) and u(0,1). Then, the values of u on the remaining vertices of the lattice
can be determined, by using successively the symmetry constraint. In this setting there will
be points where the values of u can be determined by using either the lattice equation, or
the symmetry constraint (⊕ points). However, since the symmetry constraint is by definition
compatible with the lattice equation, the values determined by the two different ways described
above are, necessarily, identical. Thus, for generic initial data, such a group-invariant solution
exists and is unique (see the discussion in [3, 22, 23]). Let it be noted, however, that such a
symmetry reduction leads to four-dimensional mappings.

Nevertheless, under certain conditions, symmetry reductions of Cauchy problem of the
type under consideration lead to mappings which are three dimensional. To see how this
is obtained, let us require that a given Lie-point symmetry of the lattice equation is also a
symmetry of the constraint C[u] = 0. If x = X(n,m, u(0,0))∂u(0,0)

is the generator of the
Lie-point symmetry, then the above requirement is equivalent to the following commutation
relation1:

[x, vC] = 0, mod C[u] = 0. (41)

The existence of the point symmetry generated by x allows one to define lattice invariants
(reduced variables) assigned on the edges of the square grid, in terms of which, the lattice
equation can be casted as a map. The dynamics of this map is restricted to the white squares
of the chessboard in figure 5. Moreover, since x is also a symmetry of the constraint C[u] = 0
(defined now on the vertices of the shaded squares of the chessboard), the latter can be written
in terms of the invariants of the vector field x on J(1,−1). In this way, the corresponding invariant

1 Indeed, the commutation relation [x, vC ] = 0, yields x(C[u]) − C[u]∂u(0,0)
(X(n, m, u(0,0))) = 0 which, in virtue of

C[u] = 0, means that x is also a symmetry generator of the constraint C[u] = 0.
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x1

x2

x1

x3 x3

x2

Figure 5. The Cauchy problem on the dual (chessboard) lattice.

solutions are constructed from the associated Cauchy problem with initial values x1, x2, x3

assigned on the edges (figure 5), and, consequently, the mappings obtained by this procedure
are, in general, three dimensional.

A specific example illustrating the case of reductions to three-dimensional mappings is
provided by the lattice potential KdV equation (33). The most general symmetry constraint
on a cross configuration of points is obtained from a linear combination of the symmetry
generators presented in the previous section, i.e.

vC =
3∑

i=1

λixi +
4∑

i=1

µivi , (42)

where λi, µi are arbitrary complex parameters. Here, {x1, x2, x3} is the set of Lie-point
symmetry generators, which span a Lie algebra g isomorphic to so(1, 1), and {v1, v2, v3, v4}
is the set of the three-point generalized symmetries. We note that, under the transformation
u �→ (−1)n+mu, the symmetry generator x2 is mapped to x1. Thus, for the symmetry
reduction using the invariants of one-dimensional subalgebras of g, it is sufficient to consider
two inequivalent cases, namely x = x1 or x3.

9.2. Symmetry reduction of H1 using the invariants of x1

We consider first the case x = x1 and recast the lattice equation H1 as an invertible map
R : CP

1 × CP
1 �→ CP

1 × CP
1. To this end, we introduce the following lattice invariants

along the orbits of x1:

v(0,0) = u(1,0) − u(0,0), w(0,0) = u(1,1) − u(1,0), v(0,1) = u(1,1) − u(0,1), w(−1,0) = u(0,1) − u(0,0),

(43)

where v(i,j), w(i,j) ∈ J(2)
∗ and J(2)

∗ is the space obtained from J(2) by removing (u(2,0), u(0,2)).
There is a functional relation among the above invariants, namely

v(0,0) + w(0,0) = v(0,1) + w(0,−1), (44)

following from the fact that the space of invariants along the orbits of x on J(1)
∗ is three

dimensional. On the other hand, since x is a symmetry generator of equation H1, the latter
can be written in terms of the invariants (43) in the form

(v(0,0) + w(0,0))(v(0,0) − w(−1,0)) + r = 0, (45)
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R−1
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R̄−1

f1

f2
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f4

f1
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Figure 6. The invertible maps R, R̄. Their dynamics is restricted to the white squares of the
chessboard.

where r = α − β. Equations (44) and (45) can be uniquely solved for v(0,1), w(−1,0) in terms
of v(0,0), w(0,0), and conversely, implying the existence of the following invertible map:

R(f1, f2) = (f3, f4) =
(

f2 − r

f1 + f2
, f1 +

r

f1 + f2

)
, (46)

where

(f1, f2, f3, f4) = (v(0,0), w(0,0), v(0,1), w(−1,0)). (47)

Moreover, equations (44) and (45) can be uniquely solved for v(0,1), w(0,0) in terms of
v(0,0), w(−1,0), implying also the existence of the invertible map

R̄(f1, f4) = (f3, f2) =
(

−f4 +
r

f4 − f1
,−f1 +

r

f4 − f1

)
. (48)

The existence of the above invertible map R̄ is associated with the quadrarationality property
of the birational map R. Maps with this property were studied recently in [2], in connection
with the Yang–Baxter relation. Here, the quadrarationality property of the map R allows one
to uniquely determine two of the four values fi assigned on the vertices of the white squares
of the chessboard in terms of the remaining two, as shown in figure 6.

We proceed by writing the symmetry constraint vC(u) = 0, where vC is given by
equation (42), in terms of the invariants (43) and their shifts. To this end, it is necessary
that relation (41) holds. A direct calculation shows that

[x1, vC] = λ3x2 +
1

2

µ2 − µ4

α − β
x1, (49)

from which we conclude that the parameters λi, µi should be restricted by the following
relations:

λ3 = 0, µ2 = µ4. (50)

Taking into account the above relations, one can write the symmetry constraint vC(u) = 0 in
terms of the invariants (43) in the form

C(n,m, g1, g2, g3, g4) := λ1 + λ2(−1)n+m +
µ2n + µ1

g1 + g2
+

µ2m + µ3

g3 + g4
= 0. (51)

where

(g1, g2, g3, g4) = (v(0,0), v(−1,0), w(−1,0), w(−1,−1)). (52)

We consider now the Cauchy problem on the chessboard with initial values (x1, x2, x3), as
shown in figure 5. The updated values (x ′

1, x
′
2, x

′
3) in the n-direction of the lattice can be found

by using the invertible maps R, R̄ and the symmetry constraint (51). Indeed, the value x ′
2 is
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the second component of the map R̄(x3, x2) and obviously x ′
3 = x1. The updated value x ′

3 is
computed in three steps. First, we find x4 by solving the equation C(n,m, x3, x1, x4, x2) = 0 for
x4, next from the mapR−1(x3, x4) = (x5, x6) we pick the second component x6, and finally the
value x ′

3 is found by solving the equation C(n+ 1,m, x ′
3, x3, x6, x

′
2) = 0, for the corresponding

variable. A straightforward calculation shows that the updated values (x ′
1, x

′
2, x

′
3) are found

from the following non-autonomous system of first order ordinary difference equation in the
variable n:

x ′
1 = x3, (53)

x ′
2 = −x3 +

r

x3 − x2
, (54)

x ′
3 = −x3 +

rc(n + 1, µ1)(
c(n,µ1)

x1+x3
+ λ(n + m)

)
(x2 − x3)2 + c(m,µ3)(x2 − x3) − rλ(n + m + 1)

, (55)

where c(n, µ) = µ2n + µ and λ(n) = λ1 + λ2(−1)n. The above system can be decoupled for
the variable y(n) := x ′

2 + x3 = x2(n + 1,m) + x3(n,m) leading to the second-order difference
equation

rc(n + 1, µ1)

y(n + 1)y(n) + r
+

rc(n, µ1)

y(n)y(n − 1) + r
= c(n + 1, µ1)

+ c(m,µ3) + y(n)λ(n + m + 1) − r

y(n)
λ(n + m), (56)

which is known as the asymmetric, alternate discrete Painlevé II equation [10, 12].

9.3. Symmetry reduction of H1 using the invariants of x3

We now turn to the case where we use the invariants of x = x3. Following the preceding
considerations (see also [26]), we introduce the following invariants on J(2)

∗ along the orbits
of x3:

v(0,0) = u(1,0)u(0,0), w(0,0) = u(1,1)u(1,0),

v(0,1) = u(1,1)u(0,1), w(−1,0) = u(0,1)u(0,0).
(57)

The above invariants are functionally related to

v(0,0)v(0,1) = w(0,0)w(0,−1). (58)

On the other hand, equation H1 can be written in terms of the invariants (57) in the form

v(0,0) − w(−1,0) − w(0,0) + v(0,0) = r. (59)

Using equations (58) and (59) we obtain the invertible maps R : (f1, f2) �→ (f3, f4),

R̄(f1, f4) �→ (f3, f2). Explicitly they are defined by

R(f1, f2) = (f3, f4) =
(

f2

(
1 +

r

f2 − f1

)
, f1

(
1 +

r

f2 − f1

))
, (60a)

R̄(f1, f4) = R(f1, f4) = (f3, f2), (60b)

where (f1, f2, f3, f4) = (v(0,0), w(0,0), v(0,1), w(−1,0)). Next we write the symmetry constraint
vC(u) = 0 in terms of the invariants (57), where vC is given by (42). A straightforward
calculation leads to the following result:

[x3, vC] = −λ1x2 − λ2x1. (61)
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Hence, relation (41) holds whenever

λ1 = 0, λ2 = 0. (62)

In this setting, the symmetry constraint vC(u) = 0 is written in terms of the invariants (57) as
follows:

C(n,m, g1, g2, g3, g4) := λ3(−1)n+m +
µ2 − µ4

2r
+

µ2n + µ1

g1 − g2
+

µ4m + µ3

g3 − g4
= 0, (63)

where

(g1, g2, g3, g4) = (v(0,0), v(−1,0), w(−1,0), w(−1,−1)). (64)

The corresponding Cauchy problem on the chessboard is reduced now to the solution of
the ordinary difference equations defined by the mapping M : (x1, x2, x3) �→ (x ′

1, x
′
2, x

′
3). The

updated values are found in the similar manner as in the previous case where now the invertible
maps R, R̄ and the symmetry constraint are given by equations (60) and (63), respectively.
More precisely we have

x ′
1 = x3, (65)

x ′
2 = x3

(
1 +

r

x2 − x3

)
, (66)

and x ′
3 is found by solving

c(n + 1)
x ′

3 − x ′
2

x ′
3 − x ′

1

+ c(n)
x3 − x2

x3 − x1
= c(n + 1) + d(m) + λ(n + m)(x2 − x3)

+ λ(n + m + 1)(x ′
2 − x3), (67)

where

c(n) = µ2n + µ1, d(m) = µ4m + µ3, λ(n) = λ3(−1)n +
µ2 − µ4

2r
. (68)

If µ2 = µ4 then equation (67) can be integrated once. Due to a compatibility condition, the
arbitrary function of m in the discrete integration is specified up to a constant, yielding the
following result:

c(n)
x3 − x2

x3 − x1
= (−1)n+m(λ3x2 + ρ) +

1

2
(c(n) + d(m)) +

µ2

4
, (69)

where ρ is the complex constant of integration. One may solve equation (69) for x2 and use the
result to eliminate x2 from equation (66), using (65). This leads to a second order difference
equation for x1, which we omit because of its length.

10. Conclusions and perspectives

We have presented a symmetry analysis of a class of lattice equations on Z
2, which are

characterized by affine linearity and D4-symmetry. Once a specific equation in the class is
given, the results summarized in propositions 3 and 4 explicitly determine the characteristics of
its three- and five-point generalized symmetry generators. Applied to the integrable equations
obtained in classification [1] these results allowed us to determine all Lie-point, three- and
five-point generalized symmetries admitted by the above equations. The results obtained in
this fashion provide a proof that these lists of symmetries are exhaustive. From this point of
view, the present work constitutes a generalization of the studies on these equations presented
in [16, 29, 31, 33].
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The effectiveness of using Lie-point symmetries of integrable lattice equations in obtaining
Yang–Baxter maps was demonstrated in [25, 26]. In particular, it was shown there that the
Yang–Baxter variables can be chosen as invariants of the multi-parameter symmetry groups
of the integrable lattice equations. Here, it was shown that this connection, combined with the
quadrarationality property of the associated Yang–Baxter maps [2], can be used in obtaining
group invariant solutions of a lattice equation. Specifically, we considered a Cauchy problem
for the lattice potential KdV equation compatible with the most general symmetry constraint
on five points. The solution of this initial value problem was constructed by solving a second-
order mapping, which represents a discrete analog of the Painlevé equations.

The preceding symmetry analysis may also be applied to those equations in the class
considered above which do not have the consistency property. It would be interesting to
consider the corresponding symmetry reductions and investigate various properties of the
resulting mappings, such as the singularity confinement [24] and the algebraic entropy [4].
Moreover, it would be interesting to extend the results obtained here to lattice equations on
Z

2, which possess symmetries other than the symmetries of the square. Work in this direction
is in progress.
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Appendix. Proof of proposition 3

Let

v(2) =
1∑

i=0

1∑
j=0

R(n + i, m + j, u(i,j), u(i+1,j), u(i−1,j);α, β)∂u(i,j)

be the second prolongation of the generator v of a three-point generalized symmetry. In this
case, the infinitesimal symmetry criterion takes the form

Q,u(0,1)
R(n,m + 1, u(0,1), u(1,1), u(−1,1);α, β)

+ Q,u(1,1)
R(n + 1,m + 1, u(1,1), u(2,1), u(0,1);α, β)

+ Q,u(0,0)
R(n,m, u(0,0), u(1,0), u(−1,0);α, β)

+ Q,u(1,0)
R(n + 1,m, u(1,0), u(2,0), u(0,0);α, β) = 0. (A.1)

The last equation must hold on every solution of the equation

Q = Q(u(0,0), u(1,0), u(0,1), u(1,1);α, β) = 0,

and its shifted consequences, i.e.

Q
∼

= Q(u(−1,0), u(0,0), u(−1,1), u(0,1);α, β) = 0, Q̃ = Q(u(1,0), u(2,0), u(1,1), u(2,1);α, β) = 0.

Using the above equations, one may express the values u(2,1), u(0,0) and u(−1,0) in terms of the
remaining ones.
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One can eliminate the shifts of the characteristic R from equation (A.1) by differentiating
the latter w.r.t. u(−1,1), which yields

Q,u(0,1)
R,u(−1,1)

(n,m + 1, u(0,1), u(1,1), u(−1,1);α, β)

+ Q,u(0,0)
R,u(0,−1)

(n,m, u(0,0), u(1,0), u(−1,0);α, β)
∂u(−1,0)

∂u(−1,1)

= 0, (A.2)

since only u(−1,0) implicitly depends on u(−1,1) through the equation Q
∼

= 0. Next, we divide

equation (A.2) by Q,u(0,1)
and take the total derivative of the resulting equation w.r.t. u(1,0), i.e.

Du(1,0)

(
Q,u(0,0)

Q,u(0,1)

R,u(0,−1)
(n,m, u(0,0), u(1,0), u(−1,0);α, β)

∂u(−1,0)

∂u(−1,1)

)
= 0, (A.3)

where

Du(1,0)
= ∂u(1,0)

+
∂u(0,0)

∂u(1,0)

∂u(0,0)
+

∂u(−1,0)

∂u(0,0)

∂u(0,0)

∂u(1,0)

∂u(0,0)
.

Writing equation (A.3) explicitly, one arrives at

(G,u(1,0)
(u(1,0), u(0,1)) + Gu(−1,0)

(u(−1,0), u(0,1)))R,u(−1,0)
+ G(u(−1,0), u(0,1))R,u(−1,0)u(−1,0)

+ G(u(1,0), u(0,1))

(
R,u(1,0)u(−1,0)

− h,u(1,0)
(u(0,0), u(1,0))

h(u(0,0), u(1,0))
R,u(−1,0)

)
−h(u(0,0), u(0,1))

(
R,u(0,0)u(−1,0)

− h,u(0,0)
(u(0,0), u(1,0))

h(u(0,0), u(1,0))
R,u(−1,0)

)
= 0, (A.4)

where we have omitted the arguments of the function R(n,m, u(0,0), u(1,0), u(−1,0);α, β) for
simplicity, and the equations Q = 0,Q

∼
= 0 have been taken into account to evaluate the

derivatives of u(−1,0) and u(0,0), i.e.

∂u(0,0)

∂u(1,0)

= −Q,u(1,0)

Q,u(0,0)

= − h(u(0,0), u(0,1))

G(u(1,0), u(0,1))
,

∂u(0,0)

∂u(0,1)

= −Q,u(0,1)

Q,u(0,0)

= −G(u(1,0), u(0,1))

h(u(0,0), u(1,0))
,

∂u(−1,0)

∂u(−1,1)

= −
Q
∼ ,u(−1,1)

Q
∼ ,u(−1,0)

= −G(u(−1,0), u(0,1))

h(u(−1,1), u(0,1))
,
∂u(−1,0)

∂u(0,0)

= −
Q
∼ ,u(0,0)

Q
∼ ,u(−1,0)

= −G(u(−1,0), u(0,1))

h(u(0,0), u(0,1))
.

Next, we substitute the derivatives of the polynomials G appearing in equation (A.4) by the
relation

G,u(1,0)
(u(1,0), u(0,1)) + G,u(−1,0)

(u(−1,0), u(0,1)) = 2
G(u(1,0), u(0,1)) − G(u(−1,0), u(0,1))

u(1,0) − u(−1,0)

,

which follows from the fact that the polynomial G is quadratic and symmetric in its arguments.
Upon these substitutions, equation (A.4) simplifies to

−h(u(0,0), u(0,1))

(
R,u(0,0)u(−1,0)

− h,u(0,0)
(u(0,0), u(1,0))

h(u(0,0), u(1,0))
R,u(−1,0)

)
+ G(u(1,0), u(0,1))

(
R,u(1,0)u(−1,0)

−
(

2

u(−1,0) − u(0,0)

+
h,u(1,0)

(u(0,0), u(1,0))

h(u(0,0), u(1,0))

)
R,u(−1,0)

)
+ G(u(−1,0), u(0,1))

(
R,u(−1,0)u(−1,0)

− 2

u(1,0) − u(−1,0)

R,u(−1,0)

)
= 0. (A.5)

The last equation involves the values of u assigned on four vertices of the lattice (the black ones
in figure A1) and should hold on every solution of equation Q = 0. Equation (A.5) depends on
u(0,1) through the polynomials h(u(0,0), u(0,1)),G(u(1,0), u(0,1)) and G(u(−1,0), u(0,1)), which
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u(−1,0) u(0,0) u(1,0) u(2,0)

u(−1,1) u(0,1) u(1,1) u(2,1)

Q Q Q

Figure A1. The points of the lattice and the corresponding equations.

are in general quadratic in u(0,1). Thus, it is necessary to set the coefficients of different powers
of u(0,1) in the latter equation equal to zero, i.e. h(u(0,0), 0) G(u(1,0), 0) G(u(−1,0), 0)

h′(u(0,0), 0) G′(u(1,0), 0) G′(u(−1,0), 0)

h′′(u(0,0), 0) G′′(u(1,0), 0) G′′(u(−1,0), 0)


−R,u(0,0)u(−1,0)

+ A1R,u(−1,0)

R,u(1,0)u(−1,0)
− A2R,u(−1,0)

R,u(−1,0)u(−1,0)
− 2R,u(−1,0)

u(1,0)−u(−1,0)

 =
0

0
0

, (A.6)

where the prime denotes differentiation w.r.t. u(0,1) and

A1 = h,u(0,0)
(u(0,0), u(1,0))

h(u(0,0), u(1,0))
, A2 = 2

u(−1,0) − u(0,0)

+
h,u(1,0)

(u(0,0), u(1,0))

h(u(0,0), u(1,0))
.

In the generic case where

rank G = 3, (A.7)

with

G =
 h(x, y) G(x, z) G(x,w)

h,x(x, y) G,x(x, z) G,x(x,w)

h,xx(x, y) G,xx(x, z) G,xx(x,w)

∣∣∣∣∣∣
x=0

, (A.8)

the system (A.6) has the unique solution

R,u(0,0)u(−1,0)
= h,u(0,0)

(u(0,0), u(1,0))

h(u(0,0), u(1,0))
R,u(−1,0)

,

R,u(1,0)u(−1,0)
=

(
2

u(−1,0) − u(0,0)

+
h,u(1,0)

(u(0,0), u(1,0))

h(u(0,0), u(1,0))

)
R,u(−1,0)

, (A.9)

R,u(−1,0)u(−1,0)
= 2

u(1,0) − u(−1,0)

R,u(−1,0)
.

Let it be noted that, even though the rank condition is violated this is a solution of system
(A.6) and, consequently, of equation (A.5).

Integrating system (A.9), we find that the characteristic reads the form

R(n,m, u(0,0), u(1,0), u(−1,0);α, β) = A(n,m;α, β)
h(u(0,0), u(1,0))

u(1,0) − u(−1,0)

+ r(n,m, u(0,0), u(1,0);α, β), (A.10)

where A and r are arbitrary functions of their arguments.
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Next, we substitute (A.10) into the determining equation (A.1). Using the relation2

h,u(1,0)
(u(0,0), u(1,0)) + h,u(−1,0)

(u(−1,0), u(0,0)) = 2
h(u(0,0), u(1,0)) − h(u(−1,0), u(0,0))

u(1,0) − u(−1,0)

, (A.11)

and its shifted versions, we find that it is convenient to set

r(n,m, u(0,0), u(1,0);α, β)

= −A(n,m;α, β)h,u(1,0)
(u(0,0), u(1,0)) + φ(n,m, u(0,0), u(1,0);α, β)

2
.

Upon these substitutions the characteristic takes the form

A(n,m;α, β)

(
h(u(0,0), u(1,0))

u(1,0) − u(−1,0)

− 1

2
h,u(1,0)

(u(0,0), u(1,0))

)
+

1

2
φ(n,m, u(0,0), u(1,0);α, β)

(A.12)

and the determining equation becomes

Q,u(0,0)

(
A(n,m;α, β)

(
−h,u(1,0)

(u(0,0), u(1,0)) +
2h(u(0,0), u(1,0))

u(1,0) − u(−1,0)

)
+ φ

)
+ Q,u(1,0)

(
A(n + 1,m;α, β)

(
−h,u(2,0)

(u(1,0), u(2,0)) +
2h(u(1,0), u(2,0))

u(2,0) − u(0,0)

)
+ Sn(φ)

)
+ Q,u(0,1)

(
A(n,m + 1;α, β)

(
−h,u(1,1)

(u(0,1), u(1,1)) +
2h(u(0,1), u(1,1))

u(1,1) − u(−1,1)

)
+ Sm(φ)

)
+ Q,u(1,1)

(
A(n + 1,m + 1;α, β)

(
−h,u(2,1)

(u(1,1), u(2,1))

+
2h(u(1,1), u(2,1))

u(2,1) − u(0,1)

)
+ Sn(Sm(φ))

)
= 0,

(A.13)

where we have omitted the arguments of the function φ and its shifted values. Equation (A.13)
involves the values of the function u assigned on the eight vertices of figure A1. Using the
equations Q = 0 on the three faces, we eliminate three of these values, and we have chosen
to eliminate u(−1,0), u(1,1) and u(2,1).

The only terms in (A.13) which depend on u(−1,0) and u(−1,1) appear in the coefficients
of A(n,m;α, β) and A(n,m + 1;α, β), respectively. We take the total derivative of the
determining equation (A.13) w.r.t. u(−1,1), since u(−1,0) depends on u(−1,1) through the equation
Q
∼

= 0. After a lengthy calculation, this simplifies to

(A(n,m;α, β) − A(n,m + 1;α, β)) h(u(0,0), u(1,0))h(u(0,0), u(0,1))G(u(1,0), u(0,1)) = 0,

(A.14)

where we have used equations Q = 0,Q
∼

= 0 to eliminate u(1,1) and u(−1,0), respectively, and

relation (14b). Equation (A.14) implies that A(n,m;α, β) does not depend on m, i.e.

A(n,m;α, β) = a(n;α, β). (A.15)

Thus, taking into account the latter, the terms in (A.13) involving A(n,m;α, β) and
A(n,m + 1;α, β) are independent of u(−1,1), and consequently they can be evaluated at

2 To prove this relation, we write h(u(0,0), u(1,0)) = p2(u(0,0))u
2
(1,0) + p1(u(0,0))u(1,0) + p0(u(0,0)) and

h(u(−1,0), u(0,0)) = S−1
n (h(u(0,0), u(1,0))), since the latter function is the backward shift of the former in the

n-direction. Using the fact that they are symmetric, a straightforward calculation implies the result.
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u(−1,1) = 0, simplifying to

a(n;α, β)

[
Q,u(0,0)

(
−h,u(1,0)

(u(0,0), u(1,0)) + 2h(u(0,0), u(1,0))
Q,u(1,0)

(u(0,0), u(1,0), u(0,1), 0)

Q(u(0,0), u(1,0), u(0,1), 0)

)
+ Q,u(0,1)

(
2h(u(0,1), u(1,1))

u(1,1)

− h,u(1,1)
(u(0,1), u(1,1))

)]
. (A.16)

Moreover, it turns out that the determining equation, apart from the function φ, does not
depend on the value u(2,0). Indeed, substituting (A.15) in equation (A.13), the total derivative
of the resulting equation w.r.t. u(2,0) is identically zero. Thus, the relevant terms in (A.13),
except the function φ, are independent of u(2,0), and hence we can set u(2,0) = 0 in them.
These can be written as(

−h,u(2,0)
(u(1,0), u(2,0)) +

2h(u(1,0), u(2,0))

u(2,0) − u(0,0)

)∣∣∣∣
u(2,0)=0

= u2
(0,0)∂u(0,0)

(
h(u(0,0), u(1,0))

u2
(0,0)

)
, (A.17a)

(
−h,u(2,1)

(u(1,1), u(2,1)) +
2h(u(1,1), u(2,1))

u(2,1) − u(0,1)

)∣∣∣∣
u(2,0)=0

= h,u(0,1)
(u(0,1), u(1,1))

− 2h(u(0,1), u(1,1))
Q,u(0,1)

Q

∣∣∣∣
u(0,0)=0

. (A.17b)

Substituting (A.15), (A.16) and (A.17) in equation (A.13), the latter simplifies to

a(n;α, β)

[
Q,u(0,0)

(
−h,u(1,0)

(u(0,0), u(1,0)) + 2h(u(0,0), u(1,0))
Q,u(1,0)

(u(0,0), u(1,0), u(0,1), 0)

Q(u(0,0), u(1,0), u(0,1), 0)

)
+ Q,u(0,1)

(
2h(u(0,1), u(1,1))

u(1,1)

− h,u(1,1)
(u(0,1), u(1,1))

)]
+ a(n + 1;α, β)

[
Q,u(1,0)

u(0,0)h,u(0,0)
(u(0,0), u(1,0)) − 2h(u(0,0), u(1,0))

u(0,0)

+ Q,u(1,1)

(
h,u(0,1)

(u(0,1), u(1,1)) − 2h(u(0,1), u(1,1))
Q,u(0,1)

(0, u(1,0), u(0,1), u(1,1))

Q(0, u(1,0), u(0,1), u(1,1))

)]
+ Q,u(0,0)

φ(n,m, u(0,0), u(1,0);α, β) + Q,u(1,0)
φ(n + 1,m, u(1,0), u(2,0);α, β)

+ Q,u(0,1)
φ(n,m + 1, u(0,1), u(1,1);α, β)

+ Q,u(1,1)
φ(n + 1,m + 1, u(1,1), u(2,1);α, β) = 0. (A.18)

It remains to simplify the coefficients of a(n;α, β) and a(n + 1;α, β) by eliminating the
value u(1,1). For this purpose, we use relations (14c), (14d) and the following ones:

u(1,1)

(
h,u(1,1)

(u(0,1), u(1,1)) + G,u(1,0)
(u(1,0), u(0,1))

) − 2h(u(0,1), u(1,1))

2u(1,1)G(u(1,0), u(0,1))
= Q,u(1,0)

Q

∣∣∣∣
u(1,1)=0

,

(A.19)

u(0,0)

(
h,u(0,0)

(u(0,0), u(1,0)) + G,u(0,1)
(u(1,0), u(0,1))

) − 2h(u(0,0), u(1,0))

2u(0,0)G(u(1,0), u(0,1))
= Q,u(0,1)

Q

∣∣∣∣
u(0,0)=0

,

(A.20)
h(u(0,0), u(1,0))G,u(1,0)

(u(1,0), u(0,1)) − h,u(1,0)
(u(0,0), u(1,0))G(u(1,0), u(0,1))

h(u(0,1), u(1,1))G,u(0,1)
(u(1,0), u(0,1)) − h,u(0,1)

(u(0,1), u(1,1))G(u(1,0), u(0,1))
= Qu(1,1)

Qu(0,0)

, (A.21)

which hold in view of the equation Q = 0.
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Finally, equation (A.18) simplifies to

(a(n;α, β) − a(n + 1;α, β)) h(u(0,0), u(1,0))
2∂u(1,0)

(
G(u(1,0), u(0,1))

h(u(0,0), u(1,0))

)
+ G(u(1,0), u(0,1))φ(n,m, u(0,0), u(1,0);α, β)

+ h(u(0,0), u(0,1))φ(n + 1,m, u(1,0), u(2,0);α, β)

+ h(u(0,0), u(1,0))φ(n,m + 1, u(0,1), u(1,1);α, β)

= Q2
,u(1,1)

φ(n + 1,m + 1, u(1,1), u(2,1);α, β). (A.22)

Obviously, if we take φ(n,m, u(0,0), u(1,0);α, β) = 0 and a(n;α, β) = constant, then
the last equation is satisfied. Thus, so far, we have proved that, independently of the rank
condition (A.7), every equation Q = 0, where the function Q is affine linear and possesses
the D4-symmetry, admits a three-point symmetry with characteristic

R(n,m, u(0,0), u(1,0), u(−1,0);α, β) = h(u(0,0), u(1,0);α, β)

u(1,0) − u(−1,0)

− 1

2
h,u(1,0)

(u(0,0), u(1,0);α, β).

Since the function Q is symmetric, i.e.

Q(u(0,0), u(1,0), u(0,1),(1,1) ;α, β) = εQ(u(0,0), u(0,1), u(1,0),(1,1) ;β, α),

we find that the characteristic of another symmetry generator is

R(n,m, u(0,0), u(0,1), u(0,−1);β, α) = h(u(0,0), u(0,1);β, α)

u(0,1) − u(0,−1)

− 1

2
h,u(0,1)

(u(0,0), u(0,1);β, α).

Now, we focus in the generic case, i.e. rank G = 3. In this case, the characteristic of a
three-point generalized symmetry generator is necessarily of the form

R(n,m, u(0,0), u(1,0), u(−1,0), α, β)

= a(n;α, β)

(
h(u(0,0), u(1,0);α, β)

u(1,0) − u(−1,0)

− 1

2
h,u(1,0)

(u(0,0), u(1,0);α, β)

)
+

1

2
φ(n,m, u(0,0), u(1,0);α, β),

where the functions a(n, α, β), φ(n,m, u(0,0), u(1,0);α, β) satisfy the determining
equation (A.22).

Actually, the function φ(n,m, u(0,0), u(1,0);α, β) should be independent of its fourth
argument, namely u(1,0). Indeed, differentiating the determining equation (A.22) w.r.t. u(2,0)

and using (14b), we arrive at

h(u(0,1), u(1,1))φ,u(2,0)
(n + 1,m, u(1,0), u(2,0);α, β)

+ G(u(1,0), u(0,1))φ,u(2,1)
(n + 1,m + 1, u(1,1), u(2,1);α, β)

∂u(2,1)

∂u(2,0)

= 0, (A.23)

since u(2,1) depends on u(2,0) through the equation Q̃ = 0. Since the value u(0,1) occurs
in the last equation through the polynomials h(u(0,1), u(1,1)) and G(u(1,0), u(0,1)), we set the
coefficients of the different powers of u(0,1) equal to zero. This leads to a linear system for the
derivatives of φ appearing in equation (A.23). The maximal rank condition for the matrix G
ensures that the matrix of this system given by h(u(0,1), u(1,1)) G(u(1,0), u(0,1))

h′(u(0,1), u(1,1)) G′(u(1,0), u(0,1))

h′′(u(0,1), u(1,1)) G′′(u(1,0), u(0,1))

∣∣∣∣∣∣
u(0,1)=0

, where ′ ≡ ∂

∂u(0,1)

,
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has rank 2, which implies that the function φ is independent of its fourth argument, i.e.

φ(n,m, u(0,0), u(1,0);α, β) = φ(n,m, u(0,0);α, β).

Thus, in this case, the determining equation becomes

(a(n;α, β) − a(n + 1;α, β))h(u(0,0), u(1,0))
2∂u(1,0)

(
G(u(1,0), u(0,1))

h(u(0,0), u(1,0))

)
+ G(u(1,0), u(0,1))φ(n,m, u(0,0);α, β)

+ h(u(0,0), u(0,1))φ(n + 1,m, u(1,0);α, β)

+ h(u(0,0), u(1,0))φ(n,m + 1, u(0,1);α, β)

= Q2
,u(1,1)

φ(n + 1,m + 1, u(1,1);α, β). (A.24)

A final comment is that the form of the function φ is obtained in a similar manner as the
one used to obtain the general form of the characteristic of a Lie-point symmetry generator,
as presented in section 4. The substitution of φ into the determining equation (A.24) and
the usage of equation Q = 0 to eliminate u(1,1) in the resulting equation yield a polynomial
in u(0,0), u(1,0) and u(0,1). Setting the coefficients of the different monomials equal to zero,
we come up with an overdetermined linear system of difference equations for the unknown
function a(n;α, β) and the functions Ai(n,m;α, β), which occur in the general form of the
function φ. The general solution of this system delivers the three-point generalized symmetries
and the point symmetries, as well.
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